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Abstract
In an attempt to characterize the distribution of forms and shapes of nodal
domains in wavefunctions, we define a geometric parameter, the ratio ρ between
the area of a domain and its perimeter, measured in units of the wavelength
1/

√
E. We show that the distribution function P(ρ) can distinguish between

domains in which the classical dynamics is regular or chaotic. For separable
surfaces, we compute the limiting distribution and show that it is supported on
a compact interval, which is independent of the properties of the surface.
In systems which are chaotic, or in random waves, the area-to-perimeter
distribution has substantially different features which we study numerically.
We compare the features of the distribution for chaotic wavefunctions with
the predictions of the percolation model to find agreement, but only for nodal
domains which are big with respect to the wavelength scale. This work is also
closely related to and provides a new point of view on isoperimetric inequalities.

PACS numbers: 05.45.Mt, 02.30.Ik, 02.40.Ky

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this work, we study the (real) eigenfunctions of the Laplace–Beltrami operator −�M on a
Riemannian surface M with Dirichlet boundary conditions (if M has boundaries). Consider
a real eigenfunction which satisfies

(�M + Ej)ψj (r) = 0, ψj (r)|r∈∂M = 0. (1)

The nodal domains are the maximally connected domains in M where ψj has a constant sign.
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The nodal set (or the set of nodal lines) is the zero set: Uj = {r ∈ M : ψj(r) = 0}, which also
forms the boundaries of the nodal domains. We shall denote the nodal count (i.e. the number
of nodal domains) of ψj(r) by νj .

The investigation of quantum signatures of classical chaos and integrability has been a
hot topic in quantum chaos for a long time [1, 2]. In the past few years, the interest in
nodal domains, their counting and their morphology increased after Blum et al [3] proposed a
quantitative method which distinguishes between the distributions of nodal counts in domains
where the underlying classical dynamics is integrable (separable) or chaotic. This added a
new approach, the statistical investigation of nodal patterns, to the more common investigation
methods of spectral or wavefunction statistics, which are often connected to random-matrix
theory [4]. Blum et al showed that if νj is the nodal count of the j th energy eigenstate of
a domain, then ξj = νj/j has a limiting distribution P(ξ) = limn→∞ 1

n

∑n
j=1 δ(ξ − ξj ),

where the characteristics of the distribution depend on the classical properties of the domain.
For separable domains, P(ξ) has a square-root singularity at a (system-dependent) maximum
value, while for chaotic systems P(ξ) is (approximately) normally distributed. Comparison
between the numerical results for chaotic billiards and the random-wave ensemble supports
Berry’s conjecture [5]—wavefunctions in a chaotic system behave in the limit of high energy
like a random superposition of plane waves. By that, the qualitative observation of Miller et al
[6], that nodal sets can be used to distinguish between wavefunctions in chaotic and integrable
domains, could be tested in a quantitative way. Other studies of various quantities—which
pertain to the morphology and complexity of the nodal network—were published in the
mathematical and physical literature, building upon the older results regarding the bounds
on the total lengths of the nodal lines and their curvature [7, 8]. For example, in [9] the
distribution of the curvature is calculated, in addition to the mean and the variance of the total
length of the nodal set. The distribution of the avoidance distances between nodal lines was
also computed [10], to mention a few examples.

An important breakthrough has been achieved by Bogomolny and Schmit [11] who
implemented a critical percolation model that explains the large-scale structure of nodal
domains in chaotic wavefunctions. This model is supported by a variety of numerical
calculations. For example, the expectation value and variance of the nodal count for chaotic
billiards, as well as the distribution of areas of nodal domains, follow the predictions of the
model [3, 11]; the nodal lines in the high-energy limit seem (on large scales) to be SLE6

curves [12–14] as it is proved for the boundaries of percolation clusters [15]. Despite the good
agreement, the percolation description is a priori insensitive to the structure of the nodal set on
scales of the order of a wavelength. In addition, it was demonstrated by Foltin et al [16] that
there are some special measures with a scaling behaviour which is different for percolation
and the nodal set of the random-wave ensemble. The latter special measures, in general, probe
subwavelength scales at two points at a (large) distance.

In this work, we suggest a new (quantum mechanical) method for the classification of
billiards according to their classical properties. We will discuss below in what sense the
signatures in nodal patterns differ from the scenario known for the more common spectral and
wavefunction analysis. Our method provides yet another test to the conjectures by Berry and
Bogomolny.

The parameter which we use in order to interrogate the morphology of nodal lines is
defined as follows—we consider the j th eigenfunction of (1) and its nodal domains sequence{
ω

(m)
j

}
m=1,...,νj

. The indices j,m specify a nodal domain; for this domain, we define the

area-to-perimeter ratio ρ
(m)
j by



Geometric characterization of nodal domains: the area-to-perimeter ratio 2691

ρ
(m)
j = A(m)

j

√
Ej

L
(m)
j

. (2)

where A(m)
j and L

(m)
j are the area and perimeter of ω

(m)
j and the ratio is measured in units

of the wavelength 1/
√

Ej . We shall define for different ensembles two different probability
measures on the parameter ρ.

For wavefunctions which satisfy (1) on a compact domain M, we consider a spectral
interval I = [E,E + gE], g > 0, with NI = 	{j : Ej ∈ I } and define

PM(ρ,E, g) = 1

NI

∑
Ej ∈I

1

νj

νj∑
m=1

δ
(
ρ − ρ

(m)
j

)
. (3)

Note that in the above the weights of nodal domains which belong to the same eigenfunction
are equal, but not necessarily the same as the weight of domains which belong to another
eigenfunction.

The second probability measure pertains to an ensemble of wavefunctions on unbounded
domains, in our case the Gaussian random-wave ensemble (which will be described in
section 3). Since the wavefunctions do not satisfy any boundary condition, we consider
them over an arbitrarily large and fixed domain 
 ⊂ R

2 and include only the nodal domains
which are strictly inside 
. We denote their number for a given member of the ensemble by
ν
 and define

Prw(ρ,E,
) =
〈

1

ν


∑
ωj ⊂


δ(ρ − ρj )

〉
. (4)

The reason for using two different measures is the different nature of the problems at hand.
However, in the high energy limit the two measures coalesce. We shall investigate the existence
and the features of a high-energy limiting distribution

P(ρ) = lim
E→∞

P(ρ,E). (5)

The choice of the area-to-perimeter ratio ρ as a parameter to characterize the geometry of
nodal domains is inspired by the following considerations: the nodal pattern for separable
surfaces is a checkerboard, where a nodal domain ω is asymptotically a rectangle with sides
of the order of a wavelength. Therefore, Aω ∼ E−1, Lω ∼ E− 1

2 and ρω will be of the order
of 1. Similarly, according to the percolation model, a nodal domain of a chaotic surface is
asymptotically shaped as a chain [11] with n cells, where for each cell Ac ∼ E−1, Lc ∼ E− 1

2

where Lc is the cell’s contribution to the nodal domain’s perimeter (see (17)). We get that in
both cases the parameter ρ for a typical nodal domain will be of the order of unity, yielding
localized distributions for the two types of surfaces. However, as will be shown below, the
distributions differ substantially for systems with different classical properties.

In addition, the area-to-perimeter ratio ρ is relevant not only to the study of the high-energy
limit, but arises as a natural parameter in the study of isoperimetric inequalities (see, e.g., [17]).
The restriction of a wavefunction ψj to one of its nodal domains ωm is an eigenfunction of
the Laplace–Beltrami operator on the domain ωm, with Dirichlet boundary conditions. Since
it consists of a single nodal domain, Courant theorem [18] implies that it is the ground state
of ωm. Therefore, knowing ρ

(m)
j we can express the ground-state energy in terms of the

area and perimeter of ωm. In the mathematical literature there are known bounds for such
expressions—a relevant example is the bound for convex domains, derived by Makai [19]
(lower bound) and Pólya [20] (upper bound, which was generalized to all simply or doubly
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connected domains by Osserman [21]):
π

4
� ρc � π

2
. (6)

In order to derive a distribution function P(ρ) between the extreme values, some measure on
domains should be defined. Here, we confine ourselves to well-defined families of domains—
those obtained as nodal domains of a given ensemble, and due to this restriction we are able to
define the measures (3), (4) and study the limiting distribution for different classes of systems.

In this paper, we shall examine the distribution function P(ρ) for separable and chaotic
domains and for the Gaussian random-wave ensemble. We will show that

• The limit distributions we obtain have strong ‘universal’ features. That is, they depend
crucially on the type of classical dynamics the manifold supports, and only to a lesser
extent on the idiosyncratic details of the actual system.

• The limiting distribution for all separable billiards is supported on a universal compact
interval, which is narrower than (6). The different limiting distributions share the same
singular behaviour at the support boundaries.

• The limiting distribution for the random-wave ensemble is similar to the one for chaotic
domains, as predicted by Berry’s conjecture. In addition, it is consistent with the
percolation model but contains (universal) information beyond percolation as short length
scales on the order of a wavelength are probed for small nodal domains.

We limit our intention to (quantum mechanically) separable systems, due to the
checkerboard structure in the nodal patterns of their wavefunctions. A generalization to
all integrable or pseudo-integrable domains, where, in general, the checkerboard structure is
lost, would be desirable. This highlights a general difference in the scenario known, e.g., from
spectral statistics where all integrable systems (separable or not) share the same (Poissonian)
statistics. Quite contrary statistical properties of nodal domains in integrable systems are
very different for separable systems with a checkerboard structure and non-separable systems
with generically no nodal crossings [10, 22]. Note that when a separable system is slightly
perturbed, all nodal crossings will open (in an often highly correlated way which makes the
introduction of a percolation model at this point quite difficult) and statistical properties will
change singularly (again in contrast to what is known from spectral statistics where a small
perturbation smoothly changes the statistics).

2. The limiting distribution of the area-to-perimeter ratio for separable domains

As was mentioned above, the nodal network of eigenfunctions of separable surfaces has a
checkerboard structure. This follows from the fact that one can always choose a basis in
which all the eigenfunctions can be brought into a product form. Therefore, one might expect
that the main features of the limiting distributions of different surfaces will be similar. We
will show that this is the case, and therefore we begin this section by explicit calculation of
Prec(ρ) for a rectangular billiard. The discussion of this simple example will pave the way
to computing P(ρ) for other systems (the disc billiard and a family of surfaces of revolution)
and to the identification of some common features which we assume to be universal for all
separable systems. The detailed computations are presented in appendix A.

The Dirichlet eigenfunctions for a rectangular billiard with side lengths a, b are

ψmn(x, y) = sin
πmx

a
sin

πny

b
≡ ψm(x)ψn(y). (7)

The corresponding eigenvalues are

Emn = π2

[(m

a

)2
+

(n

b

)2
]

≡ Em + En (8)
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where Em,En can be interpreted classically as the energy stored in each degree of freedom
(a formal definition can be found in appendix A). The nodal domains are rectangles of size

π√
Em

× π√
En

, therefore

Amn = π2

√
EmEn

, Lmn = 2π

(
1√
Em

+
1√
En

)
and

ρmn = π

2

(√
Em

Emn

+

√
1 − Em

Emn

)−1

≡ ρ

(
Em

Emn

)
(9)

where ρ
(

Em

Emn

) = ρ
(

En

Emn

)
. The mere form of (9) implies that ρ is bounded by

π√
8

� ρ(rec)
mn � π

2
(10)

Thus, the support of the distribution function P(ρ) is an interval which is narrower than (6).
In the limit E → ∞, the distribution (3) can be approximated (neglecting corrections of

order E− 1
2 ) by an integral. Performing the integration over the variables:

k =
√

Emn, θ = arctan

(
En

Em

)
the distribution function is

Prec(ρ) = 2

π

∫ π
2

0
δ

(
ρ − π

2(sin θ + cos θ)

)
dθ =

{
4

ρ
√

8ρ2−π2
for π√

8
� ρ � π

2

0 otherwise.
(11)

The explicit form of Prec(ρ) suggests the following qualitative and quantitative
conclusions:

(i) The existence of a limiting distribution function (which is independent of the aspect ratio
a/b of the billiard) is demonstrated.

(ii) It is supported on the compact interval [π/
√

8, π/2] .
(iii) Prec(ρ) is an analytic and monotonic decreasing function in the interval where it is

supported.
(iv) Prec(π/

√
8 + δ)

δ→0+ ∼ 1/
√

δ .
(v) Prec(π/2) = 8/π2. Hence, Prec(ρ) is discontinuous at both boundaries of the support.

The fact that ρmn depends solely on the partition of the energy between the modes was
a key element in the construction above and plays a similar role in computing P(ρ) for the
other separable systems. When ρ = π/

√
8, we get from equation (9) that Em = En, while

ρ = π/2 means that the energy is concentrated completely in one degree of freedom. The
concentration of probability near ρ = π/

√
8 shows that equal partition of energy is prevalent

among the nodal domains.
An explicit derivation of the limiting distribution P(ρ) for the family of simple surfaces

of revolution (following Bleher [23]) can be found in appendix A, in addition to a separate
derivation for the disc billiard. In both cases, it is proven that

Psep(ρ) = Prec(ρ) · T (ρ), (12)

where Prec is given by (11), and T (ρ) is a finite, positive and smooth function of ρ. Therefore,
the features which characterize Prec(ρ) dominate Psep(ρ) for all the systems considered; thus,
Psep(ρ) is supported on the same interval and demonstrates the same type of discontinuities at
its boundaries.
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Figure 1. The limiting distribution for a rectangular billiard (11) compared to the calculated
distribution for eigenfunction with E · A < 105.
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Figure 2. Semi-classical approximation of the limiting distribution for the disc billiard compared
with numerical results for three different energy intervals: 200 < kR < 210, 400 < kR < 410
and 600 < kR < 610 where k ≡ √

E.

Following the striking similarity of the distributions for all of the investigated manifolds,
we suggest that properties (i)–(v) of Prec(ρ) which were derived for the rectangular billiard
are universal features of Psep(ρ) for all two-dimensional separable surfaces. We support this
assumption by a heuristic model which is presented in appendix A.

Numerical simulations for the rectangle and the disc billiards for several energy intervals
show good agreement with the analytic derivation (see figures 1 and 2). For numerically
obtained results at finite energies, two kinds of deviations from the limiting distributions can
be observed:

(i) Fluctuations along the entire range of ρ (for the disc) or discrete jumps (for the rectangle)
in the value of P(ρ), which vanish in the limiting distribution due to the convergence
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of the corrections to the semi-classical approximations (i.e. turning sums over quantum
numbers into integrals and neglecting terms of order E− 1

2 ).
(ii) Cusps near ρ = π

4 and ρ = π
2 for the disc: the origin for the appearance of these features is

due to nodal domains with exceptional geometry—the inner domains of all wavefunctions
(which are asymptotically triangles) for the former, the domains of n,0 (which are ring
shaped) for the latter.

It is verified (analytically and numerically) that these differences converge to zero as E− 1
2

or faster.

3. The limiting distribution of the area-to-perimeter ratio for the random-wave
ensemble and chaotic domains

While for chaotic wavefunctions there is no known analytic expression for the nodal lines, we
will use known results about the morphology of the nodal set in order to propose some physical
arguments for the expected distribution. The explanations we propose are all in agreement
with numerical simulations—a detailed information about the numerical techniques and the
reliability of the results can be found in appendix B.

A frequently used model for eigenfunctions in a chaotic billiard is that of the Gaussian
random-wave ensemble. This is based on a conjecture by Berry [5] that eigenfunctions of
a chaotic billiard, in the limit of high energies, have the same statistical properties as the
Gaussian random-wave ensemble.

A solution ψ for the Helmholtz equation (1) with a given energy E = k2 on a given
domain can be written as a superposition of functions {ψl(r)}∞l=−∞ which span a complete
basis, for example

ψ(r) =
∞∑

l=−∞
alJl(kr) eilφ. (13)

Since for a compact domain, the solutions of (1) are real, we are restricted (for this choice of
basis) by a−l = (−1)la∗

l . According to Berry’s conjecture, expanding the eigenfunctions of
chaotic billiards (in the high-energy limit) in terms of (13), the coefficients al distribute for
l � 0 as independent Gaussian random variables with

〈ala
∗
l′ 〉 = δl,l′ (14)

and therefore can be modelled statistically by this ensemble of independently distributed
Gaussian random waves.

As suggested by Bogomolny and Schmit [11], the nodal domains of a random wave are
shaped as critical percolation clusters (see figure 3), where each site is of an average area

As = 2π2

k2
(15)

where, as before, k ≡ √
E. The area (or alternatively, the number of sites) of the nodal

domains (see, e.g., [24]) distributes (asymptotically) as a power law:

p(n) ∝ n−τ , (16)

where (for 2D percolation) τ = 187/91. For a bond-percolation model over a lattice (as
illustrated in figure 3), the area of a cluster which spreads on n sites is (a1 +a2)n−a2 where a1

is the area of a single site and a2 is the area of the connection between two sites; the average
perimeter is (l1 + l2)n − l2, where l1, l2 are the average contributions to the perimeter of a site
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Figure 3. Top: a realization of the bond-percolation model by Bogomolny and Schmit. The dark
sites are positive and the light are negative; at each junction there is a saddle which can be positive
or negative with equal probability, connecting by that two of its neighbours to the same cluster.
Bottom: a typical realization of the nodal structure of a random wave on the wavelength scale.

and a connection (since a cluster may contain loops which affect its perimeter, we must speak
about average). The average area-to-perimeter ratio can be written as

A

L
= C1

(
1 − C2

n + C3

)
(17)

where C1, C2, C3 > 0. This relation can be used as a guideline to the desired distribution of ρ.
Indeed, as was confirmed numerically, the distribution P(ρ) for nodal domains

follows (17) in several aspects. We have examined the restricted distribution for nodal domains
with a given number of sites—we define P (n)(ρ) to be the distribution for nodal domains with
area (

n − 1
2

)
As < A(n) �

(
n + 1

2

)
As . (18)

We found out that P (n)(ρ) is roughly symmetric about a mean value, 〈ρn〉. As in (17), 〈ρn〉
is increasing with n and converging to a limiting value, ρ∞. Since the percolation model is
assumed to provide an exact description of the system in the high-energy limit, we expect (17)
to serve as a good approximation for large domains (see figures 4 and 5).

The value of ρ∞ is a direct result of a theorem by Cauchy for the average chord length of
a domain:

〈σ 〉 = π · A

L
, (19)

where σ is the chord length. The original theorem (which was stated for convex domains) is
extended in [25], to include nonconvex and multiply connected domains.
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Figure 4. The distribution function P (n)(ρ) is plotted for several values of n. The mean value is
increasing with n, while the variance decreases (except for n = 1), as suggested by the heuristic
model.

5 10 15 20 25 30
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

n

<
ρ n>

 

 

numerical results

best fit for high n’s

Figure 5. The measured value of 〈ρn〉 compared to the best numerical fitting (for high values of
n) to (17): 〈ρn〉 = √

2(n + 0.805)/(n + 0.936).

For nodal domains of infinite size, the statistics of the average chord length should follow
that of the entire nodal set. That in turn is known to be [5, 26] 〈σRW 〉 = √

2π/k, therefore

ρ∞ = 〈σRW 〉 · k

π
=

√
2. (20)

The value of 〈ρ1〉 can also be estimated: as shown in [10], the single cell nodal domains are
mild deformations of a circle of radius r = j0/k (where j0 ≈ 2.405 is the first zero of J0).
Therefore,

〈ρ1〉 = πr2k

2πr
= j0

2
. (21)
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Figure 6. A comparison between the distribution function P(ρ) calculated for the random-wave
ensemble and for inner domains of a Sinai and stadium billiards.

In order to study the impact of the deformations on the value of 〈ρ1〉, we have calculated
ρ for a variety of domains, such as ellipses, rounded shapes with corners (a quarter of a circle
or a stadium, etc) and others. The results show that stretching of the nodal domain (e.g.
increasing the eccentricity of an ellipse) increases ρ, while turning it ‘polygonal’ (i.e. having
points on the nodal line with very high curvature) reduces ρ.

Derivation of 〈ρn〉 for other values of n seems to be more complicated. However, fitting
between the numerical results for high n values and (17) equips us with the empirical result
(which is valid for n � 1):

〈ρn〉 ≈
√

2 · n + 0.805

n + 0.936
. (22)

Another interesting feature is the width of the distribution around 〈ρn〉. Equation (19) implies
that the variance is proportional to the variance in the average chord length between different
nodal domains of (approximately) the same area. Therefore, the variance is expected to be
smaller for larger domains, which follows the statistics of the entire nodal network to a larger
extent. An exception is the variance for single site domains, which as mentioned in [10] have
strong limitations on their shape, and therefore a relatively small variation in the average chord
length (see figure 4).

The bounds (6) on ρ should not hold in general for the nodal domains of (13); however,
the numerical bounds seem to agree with (6) for all of the measured nodal domains, including
multiply connected domains, suggesting that (6) is valid for the nodal domains of the ensemble
with probability 1.

The distribution of ρ for all of the nodal domains is given by

P(ρ) =
∞∑

n=1

p(n)P (n)(ρ) (23)

where p(n) is given asymptotically by (16).
Figure 6 shows the calculated distribution for three different systems—a random-wave

ensemble, the inner domains of a Sinai billiard and those of a stadium billiard. Comparing
the functions, we find additional strengthening to Berry’s conjecture. There are boundary
effects of chaotic billiards, e.g. a peak in the distribution P(ρ) near π/

√
8 and

√
2, and a

lower probability for ρ ∼ j0/2 (see figure 7), however they vanish in the semi-classical limit.
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Figure 7. The distribution function P(ρ) for a Sinai and stadium billiards. We compare the
distribution for relatively low energy intervals (asterisks), higher intervals (crosses) and inner
domains only (solid line). The distribution function indeed (slowly) converges to the distribution
of inner domains (the peaks at π/

√
8 and

√
2 are lowered, the one at j0/2 is elevated), which is

similar to the distribution for the random-wave ensemble (see figure 6).
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Figure 8. A comparison between the limiting distribution (11) derived for the rectangle billiard
and the random-wave ensemble.

In our study it was easy to put those effects aside—if we consider only inner nodal domains
for the chaotic billiards (as in figure 6), we observe no prominent differences between the
distributions.

4. Conclusions

The main results of this work can be summarized as follows:

(i) The distribution function P(ρ) of the area-to-perimeter ratio ρ distinguishes between
billiards with separable or chaotic classical limit (see figure 8).

(ii) The distribution (12) for the examined separable billiards has some universal features,
such as a common support and a square-root divergence at the lower support. In all
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studied cases, the distribution is a mild deformation of the distribution that we found for
a rectangle.

(iii) In accordance with the random-wave conjecture, we numerically find that chaotic billiards
(stadium and Sinai) have a universal limiting distribution P(ρ) and it converges to the
distribution found for the random-wave ensemble. By considering only the inner nodal
domains for billiards, the agreement can also be shown for finite energies.

(iv) The numerical results suggest that for nodal domains of a random wave or of
eigenfunctions of chaotic billiards, the area-to-perimeter ratio is bounded by (6), i.e.
π/4 � ρrw � π/2, including nonconvex and multiply connected nodal domains (for
which these bounds have not been proven), with probability 1.

(v) We examined the percolation model for the nodal set of random waves from the perspective
of the area-to-perimeter ratio. It is shown that on the wavelength scale the geometry of
the nodal domains can only be poorly characterized by percolation arguments. However,
for large domains the geometry can be described by heuristic expressions like (17), which
are consistent with percolation theory.
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Appendix A. Derivation of the area-to-perimeter distribution for some separable
surfaces

In this appendix, we suggest a heuristic model for the universal features of the limiting
distributions of the area-to-perimeter ratio for two-dimensional separable domains. The model
is supported by an explicit derivation of the limiting distribution for the disc billiard and for
simple surfaces of revolution.

A.1. Universal features of the distribution

We begin by considering the classical geodesic flow in a two-dimensional compact domain
(e.g. a billiard). For a separable domain, a trajectory can be specified by its action variables:

m =
∮

p1 dq1, n =
∮

p2 dq2 (A.1)

where q1, q2 are the (separable) coordinates, p1, p2 are the conjugated momenta and the
integration is over one period of the specified coordinate. At every point along the trajectory,
the energy Emn = 1

2 |q̇|2 can be expressed as Emn = Em + En, where

Em ≡ 1
2 |q̇ · q̂1|2, En ≡ 1

2 |q̇ · q̂2|2 (A.2)

where q̂1, q̂2 are the local unit vectors—for example, if we consider circular domain, then
q̂1 ≡ r̂ = (cos θ, sin θ), q̂2 ≡ θ̂ = (− sin θ, cos θ). In general Em,En are not constants of
motion. The only exceptions are the trajectories in a rectangular billiard.

From a quantum point of view, the eigenstates of Schrödinger equation (1) for a separable
domain can be written as ψmn = ψm(q1)ψn(q2), while the Laplace–Beltrami operator can be
written as � = �m + �n, where �mψn = �nψm = 0. This allows us to define the quantum
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Figure A1. The value of ρ as a function of the partition of energy between the two degrees of
freedom, for the rectangular billiard.
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Figure A2. The limiting distribution of the partition of energy between the two degrees of freedom
for a rectangular billiard.

analogue to (A.2):

Em(q1, q2) = −�mψ(q1, q2)

ψ(q1, q2)
, En(q1, q2) = −�nψ(q1, q2)

ψ(q1, q2)
(A.3)

In the semi-classical limit, the spectrum of a separable domain is given by {Emn|m, n ∈ N},
where Emn is the energy of the classical trajectory specified by the action-variables mh̄, nh̄

(as emerging from Bohr–Sommerfeld quantization). In addition, the semi-classical value
of (A.3) converges to the classical value (A.2) for every point in the domain.

In section 2, the value of the area-to-perimeter ratio for a given realization ψmn for the
rectangular billiard was derived to be

ρmn = π

2

(√
Em

Emn

+

√
1 − Em

Emn

)−1

. (A.4)

Therefore, for a rectangular billiard, the value of the (quantum) parameter ρ has also an
immediate classical interpretation (see figures A1 and A2).
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In order to generalize the limiting distribution which was derived for a rectangular domain
to other separable domains, we suggest the following heuristic model:

• In the high-energy limit, (almost all of) the nodal domains of a separable domain are
converging to rectangles, and the wavefunction in the close neighbourhood of a nodal
domain is converging to (7). Therefore (in the limit) equation (A.4) should hold. However,
since for general separable domains, ψmn(r) is not an eigenfunction of the operators
�m,�n, the value of ρ

(j)
mn for a given realization ψmn will depend on the specific nodal

domain ωj .
• In the continuum limit, the limiting distribution is of the form

P(ρ) = 1

NI

∫
I

g(m, n)

∫
M

δ
(
ρ − ρ(j)

mn

)
(A.5)

where the first integral is over the energy interval and the second is over the domain. The
function g(m, n) is the quotient of the appropriate Jacobian and νmn. Since in the vicinity
of ρ = π/

√
8 two solutions for (9) coalesce, we expect the square-root singularity at

P(ρ → π/
√

8
+
) to be a universal feature.

• In addition, since ρ(Em/Emn) is convex (see equation (A.4) and figure A1), the distribution
function should be monotonically decreasing.

This supports the assumption that the properties (i)–(iv) for ρrec and Prec(ρ), which were
derived in section 2 for the rectangle, are universal features of P(ρ) for all two-dimensional
separable surfaces. Moreover, this model suggests—at least for separable domains—that a
geometric feature of the nodal pattern, i.e. the area-to-perimeter ratio of a given domain, can
be deduced directly from the underlying classical dynamics.

The suggested model is supported by an explicit derivation of the limiting area-to-
perimeter distribution for several separable domains. In these calculations we approximate
eigenfunctions and eigenvalues by the WKB method. In addition, we approximate sums over
quantum numbers (see equation (3)) by integrals and neglect terms of order E− 1

2 . The error
resulting from these approximations is of the order of E− 1

2 and therefore converges to zero in
the limit.

The theme of the derivations is similar. The Hamiltonian H for these systems is
homogeneous, i.e.,

H(λm, λn) = λ2H(m, n). (A.6)

This implies that the energy of the state ψmn can be expressed as

H(m, n) = m2H
(

1,
n

m

)
= m2 · h

( n

m

)
. (A.7)

Therefore, integration over the quantum number m becomes trivial. We will also use the first
term in the Weyl series 	{j : Ej < E} = 4πE/A + O(

√
E) in order to estimate NI .

A.2. The disc billiard

Equation (1) can be written in polar coordinates as(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ E

)
ψ(r, θ) = 0. (A.8)

For the disc billiard, the boundary conditions are ψ |r=1 = 0. The eigenfunction and
eigenvalues of (A.8) are

ψmn(r, θ) = cos(mθ + ϕ)Jm(jmnr), Emn = jmn
2 (A.9)
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where ϕ is an arbitrary phase and jmn is the nth zero of Jm(r). The nodal domains of ψmn will
be 2m replicas (or one for m = 0) of a slice containing n domains; we will enumerate them as{
ω(i)

mn

}
i=1,...,n

, where ω(1)
mn is the innermost domain. The area and perimeter of ω(i)

mn are

A(i)
mn = π

2m

j 2
mi − j 2

m,i−1

j 2
mn

L(i)
mn = π

m

jmi + jm,i−1

jmn

+ 2
jmi − jm,i−1

jmn

. (A.10)

An implicit semi-classical expression for jmn can be deduced by applying the WKB
approximation to (A.8):

n =
∫ 1

m
jmn

√
j 2
mn − m2

r2
dr ⇒

jmn = πAmn

(
n +

(
1

2
− Cmn

)
m

) (A.11)

where

Cmn = 1

π
arctan

(√
m2

j 2
mn − m2

)

Amn =
√

1 +
m2

π2
(
n +

(
1
2 − Cmn

)
m

)2 .

(A.12)

Setting z = n
m

, z′ = i
m

, and substituting (A.11) into (A.12) we get

z = cot(πCmn)

π
+ Cmn − 1

2
(A.13)

which implies that Cmn depends on z solely. Since Amn varies with n as E− 1
2 , we can

approximate Amn ≈ Am,n−1. Expressing ρ(i)
mn in terms of (A.11, A.12) yields

ρ(i)
mn =

π(jmi
2−jm,i−1

2)

2m
π
m

(jmi + jm,i−1) + 2(jmi − jm,i−1)

= π

2

√
1

1 + sin(2πC(z′))
. (A.14)

Keeping in mind that for a point r ∈ ω(i)
mn:

Em(r) = 1

r2ψ

∂2ψ

∂θ2
= m2 · j 2

mn

j 2
mi

(1 + O(n−1)). (A.15)

It can be shown that equation (A.14) is equivalent to (A.4).
Integrating (3) over the variables m,C ≡ C(z), C ′ ≡ C ′(z′), we get

PI (ρ) = − 8

εg

∫
I

dm dC
1

z

dz

dC

∫ 1
2

C

δ

(
ρ − π

2

√
1

1 + 2 sin(2πC ′)

)
dC ′. (A.16)

Performing the integration we get the limiting distribution (see equation 12 and figure A3)

P(ρ) = 4

ρ
√

8ρ2 − π2

π

2

(
4ρ2 + π

√
8ρ2 − π2

4ρ2 − π
√

8ρ2 − π2

∫ γ1(ρ)

0

sin(2πC)

1 + (C − 1
2 )π tan(πC)

dC

+
4ρ2 − π

√
8ρ2 − π2

4ρ2 + π
√

8ρ2 − π2

∫ γ2(ρ)

0

sin(2πC)

1 + (C − 1
2 )π tan(πC)

dC

)

≡ Prec(ρ) · (T1(ρ) + T2(ρ)) (A.17)
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where

γ1(ρ) = 1

2π
arcsin

(
π2 − 4ρ2

4ρ2

)
; γ2(ρ) = 1

2
− γ1(ρ). (A.18)

A.3. Surfaces of revolution

The investigated surface of revolution M is generated by a rotation of the analytic profile curve
f (x) (where x ∈ [−1, 1]) around the x axis. We restrict f (x) by f (x)x→±1 = a±

√
1 ∓ x,

which ensures smoothness at the poles of the surface. In addition, we request that f ′′(x) < 0,
so f (x) has a single maximum: fmax ≡ f (xmax).

The Lagrangian of the surface is given by

L = 1

2

∣∣∣∣ds

dt

∣∣∣∣
2

= 1

2
((1 + f ′(x)2)ẋ2 + f (x)2θ̇2). (A.19)

From which the action variables can be deduced:

m = 1

2π

∮
pθ dθ = f (x)2θ̇

n = 1

2π

∮
px dx = 1

π

∫ x+

x−

1

f (x)

√
(Ef (x)2 − m2)(1 + f ′(x)2) dx

(A.20)

where x−, x+ are the classical turning points which satisfy Ef (x±)2 − m2 = 0.
As in appendix A.2, the nodal domains will be 2m + δm0 copies of a slice with n domains

and will be denoted by {ω(i)
mn}ni=1. The homogeneity of the Hamiltonian follows directly

from (A.20). We will follow the notation z = n
m

, z′ = i
m

to get

⇒ E(m, z) = m2E2(z) (A.21)

The WKB approximation to the eigenfunctions is

ψmz(x, θ) = cos(mθ + ϕ)√
k

(
cos

(∫ x

x−
k dx − π

4

)
+ cos

(∫ x+

x

kdx − π

4

))
(A.22)
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where

k = m

f (x)

√(
E2

z f (x)2 − 1)(1 + f ′(x)2
)
.

In the limit of large n, the nodal points density on the curve is high. Therefore, applying the
WKB approximation, successive nodal points xi−1, xi should satisfy

π = m

∫ xi

xi−1

√
E2

z f (x)2 − 1

√
1 + f ′(x)2

f (x)

≈ (xi − xi−1)m

√
E2

z f (xi)2 − 1

√
1 + f ′(xi)2

f (xi)
. (A.23)

In addition, due to the homogeneity of H, x± depend on z solely, therefore

π i = m

∫ xi

x−

√
E2

z f (x)2 − 1

√
1 + f ′(x)2

f (x)
dx ⇒

z′ = 1

π

∫ xi

x−

√
E2

z f (x)2 − 1

√
1 + f ′(x)2

f (x)
dx = z′(xi, z).

(A.24)

Therefore, the location of the ith zero will be an (implicit) function xi(z, z
′) and will not

depend on m. The area and perimeter of the nodal domains are

A(i)
mn = π

2m

∫ xi

xi−1

f (x)
√

1 + f ′(x)2 dx

L(i)
mn = π

2m
(f (xi−1) + f (xi)) +

∫ xi

xi−1

√
1 + f ′(x)2 dx.

(A.25)

Therefore,

ρ(i)
m,n =

π
∫ xi

xi−1
f (x)

√
1 + f ′(x)2 dx

√
Enm

π(f (xi−1) + f (xi)) + 2m
∫ xi

xi−1

√
1 + f ′(x)2 dx

= ρ(z, z′). (A.26)

Substituting (A.23) into (A.26) we get

ρ(z, z′) = π

2

E(z)f (xi)

1 +
√

(E(z)f (xi))2 − 1
(A.27)

where E(z)f (xi) = 1 at the turning points. Since for r ∈ ω(i)
mn

Em(r) = m2

f 2(x)
= m2

f 2(xi)
(1 + O(n−1)). (A.28)

Equation (A.26) is equivalent to (A.4) as well.
Integrating (3) over m, z, z′ we get

PI (ρ) = 4π

gε|M|
∫ ∞

0
dz

∫ √
ε(1+g)

E(z)

√
ε

E(z)

dm
m

z

∫ z

0
δ(ρ − ρ(z′z)) dz′

= 2π

|M|
∫ ∞

0

dz

zE(z)

∫ z

o

δ(ρ − ρ(z′z)) dz′. (A.29)

Setting αz′z = E(z)f (x ′
i ), we get that for ρ ∈ [π/

√
8, π/2] and fixed z there are two allowed

values of α:

α1,2 = 2ρ

π2 − 4ρ2

(
π ±

√
8ρ2 − π2

)
. (A.30)
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Since f −1(x) is doubly valued, there are four allowed values of z′:

z′
j1 = min

(
f −1

(
αj

E(z)

))
, z′

j2 = max

(
f −1

(
αj

E(z)

))
(A.31)

for j = 1, 2. Therefore,

P(ρ) = 2π

|M|
∫ ∞

0

dz

zE(z)2

∑
i

∫ z

0

δ(z′ − z′
i )

ρ ′
z′z(z

′)
dz′

= Prec(ρ) · (T1(ρ) + T2(ρ)) (A.32)

where

T1 = 2π2ρ
(
4ρ2 − π

√
8ρ2 − π2

)2

|M|(π2 − 4ρ2)2(π −
√

8ρ2 − π2)

∫ ∞

z′
1i

∑
i=1,2

dz

zE(z)3

∣∣∣∣df (x ′
z′z)

dz′

∣∣∣∣
−1

T2 = 2π2ρ
(
4ρ2 + π

√
8ρ2 − π2

)2

|M|(π2 − 4ρ2)2
(
π +

√
8ρ2 − π2

) ∫ ∞

z′
2i

∑
i=1,2

dz

zE(z)3

∣∣∣∣df (x ′
z′z)

dz′

∣∣∣∣
−1

Ez is a monotonic increasing function, therefore the integrals in (A.32) diverge at z = 0. For
z � 1, E(z) = O(z), therefore the integrals converge at infinity.

For ρ → π/
√

8
+
, the coefficient of the integrals in (A.32) has a square-root singularity,

while the integral is converging to a finite positive value, therefore P(π/
√

8 + δ) ∼ 1/
√

δ.
For ρ → π/2 − δ, the first coefficient in (A.32) is of the order of δ. The lower limit of

integration is defined by

fz(z
′) = 1 + δ

Ez

= fz(0) +
δ

Ez

⇒ df (z′)
dz′ = δ

z′Ez

. (A.33)

Consequently, the first term in (A.32) will be of order

I ∼ δ

∫ ∞

z′

z′F(z′) dz

δzE3
z

. (A.34)

The value of z′ depends on the profile curve f (x), however for z′ → 0, I ∼ z′ log(z′), while
for z′ → ∞, we get that I ∼ 1/z′3, therefore I is bounded for all possible values of z′.

The value of the second term is due to contributions of nodal domains which satisfy

ρz′z = π

2
− δ ⇒ Ez ∼

1

fz(z′)δ
⇒ z = n

m
� O

(
1

δ

)
. (A.35)

Therefore, only eigenfunctions for which n/m � O(1/δ) contribute to the second term; as a
result, it is bounded by∫

I
dn dmθ(n − mδ−1)∫

I
dndm

∼= δgε
|M|
4π

gε
∼ δ, (A.36)

therefore P(π/2 − δ) is finite, and the universal features specified in section 2 are all fulfilled
by (A.32).

Appendix B. Numerical methods for evaluation of the perimeter length

In order to evaluate the area-to-perimeter ratios and their distribution for the random-wave
ensemble and chaotic billiards, we have simulated the appropriate wavefunctions on a grid.

We have calculated the statistics for 5000 realizations of random waves, where in each
realization we summed over 70 terms in (13); for chaotic billiards we have reproduced the first
2430 eigenfunctions of a Sinai billiard and the first 2725 eigenfunctions of a stadium billiard.
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The (seemingly simple) task of perimeter evaluation must be carried out carefully; it
can be shown that naive methods, like perimeter’s pixels counting, produce an error which is
independent of the sampling resolution. In order to avoid this error, we have approximated
the nodal line as a polygon, where the vortices are calculated using a linear approximation.
We have set the sampling resolution to contain 85 pixels along the average distance between
two nodal lines (

√
2π/k). This resolution was proved to produce an error which is less than

one per cent. The measured perimeter is expected to be shorter than the real one, as we are
approximating a curve by a polygon. The accuracy of the method was tested by calculating
the ratio between LT , the total length of the nodal set, and the area. It is known that for the
random-wave ensemble [9]

〈LT 〉
A · k

= 1

2
√

2
. (B.1)

The numerical values for this ratio were between

0.998

2
√

2
<

LT

A · k

(M)

<
1.003

2
√

2
. (B.2)

It should be noted that when we calculate the total nodal length we have to calculate the
perimeter of nodal domains at the edge of the grid. In many cases (i.e. where the edge domains
are very small), the perimeter calculated for them is larger than the real value. It seems likely
that the error due to this effect is of the order of the error due to polygonal approximation,
therefore the two compensate each other, to yield a total error which is relatively small, of
order LT · 10−3.
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